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CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement
MULTIPLY - BY - TO GET
TO GET - BY - DIVIDE

angstrom 1.000000 x E -10 meters (m)
atmosphere (normal) 1.01325 x E +2 kilo pascal (kPa)
bar 1.000000 x E +2 kilo pascal (kPa)
barn 1.000000 x E-28 meter2 

(M
2

)

British thermal unit (thermochemical) 1.054350 x E +3 joule (J)
calorie (thermochemical) 4.184000 joule (J)
cal (thermochemical) / cm 2  4.184000 x E-2 mega joule/m2 (MJ/mi2)
curie 3.700000 x E +i *glga becquerel (GBq)
degree (angle) 1.745329 x E-2 radian (rad)
degree Farenheit tK = (tF + 459.67)/1.8 degree kelvin (K)
electron volt 1.60219 x E -19 joule (J)
erg 1.000000 x E -7 joule (J)
erg/second 1.000000 x E-7 watt (W)
foot 3.048000 x E-1 meter (m)
foot-pound-force 1.355818 joule (J)
gallon (U.S. liquid) 3.785412 x E -3 meters (Mi

3
)

inch 2.540000 x E-2 meter (m)
jerk 1.000000 x E +9 joule (J)
joule/kilogram (J/kg) (radiation dose absorbed) 1.000000 Gray (Gy)
kilotons 4.183 terajoules
kip (1000 lbl) 4.448222 x E +3 newton (N)
kip/inch2 (kul) 6.894757 x E +3 kilo pascal (kPa)
ktap 1.000000 x E +2 newton-secend/m2 (N--s1/ 2 )
micron 1.000000 x E -6 meter (m)
mil 2.540000 x E -5 meter (m)
mile (international) 1.609344 x E +3 meter (m)
ounce 2.834952 x E-2 kilogram (kg)
pound-force (lbs avoirdupois) 4.448222 newton (N)
pound-force inch 1.129848 x E -1 newton-meter (Nm)
pound-force/inch 1.751268 x E +2 newton/meter (N/m)
pound-force/foot 2  4.788026 x E -2 kilo pascal (kPa)
pound-force/inch 2 (psi) 6.894757 kilo pascal (kPa)
pound-mass (Ibm avoirdupois) 4.535924 x E-1 kilogram (kg)
pound-mass-foot 2 (moment of inertia) 4.214011 x E -2 kilogram-meter 2 (kg.m2)
pound-mass/foots 1.601846 x E +1 kilogram/meter 3 (kg/M 3 )
rad (radiation dose absorbed) 1.000000 x E-2 "Gray (Gy)
roentgen 2.579760 x E-4 coulomb/kilogram (C/kg)
shake 1.000000 x E -8 second (s)
slug 1.459390 x E +1 kilogram (kg)
torr (mm Hg, 00 C) 1.333220 x E -1 kilo pascal (kPa)
*The becquerel (Bq) is the SI unit of radioactivity; I Bq = I event/s.
"The Gray (Gy) is the SI unit of absorbed radiation.
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SECTION 1

INTRODUCTION

On 30 October 1962 the United States conducted a nuclear test of a near-
surface, high-yield device, called Housatonic, which was detonated at 1600 GMT above
the Pacific Ocean near Johnston Island. Observations made during this test suggested
that the explosion generated a traveling ionospheric disturbance, which has been inter-
preted as an acoustic-gravity wave (AGW) (see reference 4). This interpretation has
resulted, for the most part, from the analysis of critical frequency and virtual height
measurements of vertical-incidence ionograms made at various ionosonde stations in
the surrounding Pacific region. Similar observations made following the 58 MT Soviet
test at Novaya Zemyla on 30 October 1961 also detected ionospheric disturbances over
Europe later interpreted as produced by an acoustic-gravity wave emanating from the
explosion.

Acoustic-gravity waves in the upper atmosphere can produce variations in
ionospheric electron densities great enough to cause changes in the path of a high
frequency (HF) signal propagating through the ionosphere. These changes, if severe
enough, may disrupt HF communications in the affected regions. For the two cases
mentioned above, critical frequency variations were as large as 50% and virtual height
variations as large as 100 km. Such variations are not too severe in general to cause
a blackout in HF communications. However, if many more similar bursts occur in a
given region, and sufficiently closely spaced in time, then ionospheric electron density
changes may be severe enough to cause a major disruption in HF communications.
Furthermore, if enough acoustic-gravity waves produced by many low-altitude nuclear
explosions interact in some region, spatial variations in ionospheric electron density
with length scales on the order of 10 km may develop, which may produce enough
scatter in an HF radio wave to cause an unacceptable degradation in signal strength.

This report describes a model which computes ionospheric electron density
changes produced by acoustic-gravity waves generated by any number of high-yield,
low-altitude nuclear explosions. The main requirement of this .nodel is that it con-
tain only fast-running analytic formulas possessing second order derivatives in space
and time, which can also be determined and coded as analytic formulas. The im-
plementation of this model in the RAYTRACE code, which must not be appreciably
slowed-down by the AGW model, makes this requirement an absolute necessity (see
the companion report, reference 6, for details on the implementation and use of the
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AGW model in raytracing studies). The model is based on the linearized hydrody-
namic theory of acoustic-gravity waves (see reference 2). This theory is used to justify
a single burst model that fits well with the data obtained for the two events men-
tioned above. Section 2 provides a short description of the data, concentrating on
those aspects of the data which are most important to the modeling process, while
section 3 presents a thorough outline of the theory of acoustic-gravity waves. Section 4
then shows how this theory leads to predictions about hydrodynamic density changes
produced in the upper atmosphere by an AGW emanating from a localized source. A
comparison with the data is made at this point.

Using an entirely linear approach to compute density changes eventually
leads to difficulty if either the size of an individual burst is too large or if the effects
from a large number of interacting gravity waves are attempted to be computed by
linear superposition of the single burst case. For a multiburst model, an approach
must be taken that uses as much as possible of the single burst model but which
gives reasonable results (e.g. positive densities) when the effects are combined. These
issues are resolved in section 5, where a method of combining single burst effects is
described.

As the number of bursts increases and ionospheric electron motions be-
come correspondingly large, variations in electron density occur not only from volume
changes produced by hydrodynamic motions, but also occur by diffusion, chemical in-
teraction with the atmosphere, as well as solar production during daytime. Section 6
explains how these ideas are incorporated into the model. Finally, section 7 presents
the final version of the model, employing the ideas described in the earlier sections.
Some examples are provided to demonstrate the type of results to be expected from
using the model.
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SECTION 2

REVIEW OF DATA

The Housatonic device was detonated near Johnston Island at approximately
1600 GMT (4:00 a.m. local time). Variations in critical frequency of the F2 layer
of the ionosphere, foF2, were observed at a number of sounding stations employing
vertical-incidence ionosondes at various locations in the Pacific Ocean. Virtual height
variations were also observed. These variations had the form of oscillations in the
measured quantity about its ambient value, with a period of oscillation suggesting the
passing of an acoustic-gravity wave. The difference in the time between the onset of
these oscillations and the time of the burst, which is related to the speed at which
a disturbance generated by the explosion travels to the observation point, are also
consistent with a gravity wave interpretation. Details supporting these remarks are
given below.

The earth's ionosphere contains free electrons with densities that vary with
altitude. The ioncspheric electron density generally increases with altitude until a
maximum is reached in the F region, located about 300 km above the earth's surface.
Vertical-incidence ionosondes can determine this maximum density, also called the
peak density, by sending an electromagnetic signal, whose frequency is continuously
swept from about 1 to 20 MHz (in the HF range), vertically upward into the ionosphere
and measuring the time it takes the signal to return. The maximum frequency for
which there is a return signal is called the critical frequency, foF2. (During daytime
the F region usually has two regions with local maxima, called the F1 and F2 layers.
The upper layer, which has the greatest density and remains during nighttime, is the
F2 layer. The critical frequency, foF2, measures this maximum density.) The critical,
or plasma, frequency of the F2 layer, foF2, is related to the peak electron density,
ne,m.,, by the equation

foF2[in MHz] = 2.84 Vn,,m...in units of 10' cm-3 1. ()

The virtual height, h', of electrons of a given plasma frequency, is given by
hl = ct/2, where c is the speed of light in free space and t is the time it takes the HF
signal of frequency equal to the plasma frequency to reflect from those electrons and
return to the ground. This is not equal to the true height of the electrons because
the HF signal slows down as it travels through higher electron densities. The index of
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refraction, n, of an electromagnetic wave of frequency, f, in a plasma (in the absence
of collisions and magnetic field) with plasma frequency, fp, is

[ f/ (2)

It can be seen that as a wave of given frequency (f > fp) encounters plasma of greater
density, and hence greater plasma frequency, the index of refraction approaches zero,
and the wave will reflect when f = fp. The true height, h, is related to the virtual
height by the integral

h'= dz , (3)
10 n fo n(z)/fle(h)'

where n.(z) is the electron density as a function of altitude, z.

Figure 1 shows a plot of the critical frequency, foF2, as a function of time
(GMT) abuve the sounding station located on the island of Tern, about 1200 km north
of ground zero for Housatonic. The solid line represents the data while the dotted line
shows the usual, ambient value of foF2 for those times of day. The ambient value is
rising sharply at these times due to sunrise, which occurred at about 1750 GMT (5:30
a.m. local time). It is readily observed that the measured values of foF2 oscillate
about the ambient value. The time of the detonation, labelled To, is 1600 GMT,
while the first occurrence of the oscillation is about 30 minutes later. This travel time
corresponds to an average speed of about .6 km/sec, which is near the average speed
of sound along a line from ground zero to an observation point in the F region above
Tern. Notice that the number of oscillations is about two or three before damping
out and that the time elapsed between the first crest and the second crest, labelled T
in the figure, is about 50 minutes. Also notice that the second oscillation appears to
be broader than the first, suggesting that the period of oscillation is increasing with
time.

Although not shown in the figure, the virtual height also showed some oscil-
lation, with a decrease in virtual height corresponding to the first increase in critical
frequency. As will be seen, the orientation of the earth's magnetic field lines relative to
the direction of propagation of the gravity wave determines whether electrons travel
up or down the field lines as the gravity wave passes. For Tern, the field lines are
oriented such that electron motion down the field is expected to occur as the gravity
wave first passes, as is observed (see reference 4).

4
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Figure 2 shows a similar plot of the critical frequency, foF2, as a function of
time (GMT) above the sounding station located on the island of Tonga, about 3900
km north of ground zero. This plot also shows an oscillation of foF2 about the ambient
value. The onset time of the oscillation is about 90 minutes following the burst, which
gives an average travel speed of about .7 km/sec, slightly larger than the value for
Tern. The number of oscillations observed is also two or three. The time between
the first crest and the second crest, labelled T, is about 100 minutes, greater than
the corresponding value for Tern. As in the Tern case, the time between oscillations
appears to increase with time. Finally, the relative change in foF2 with respect to
ambient, as measured by the amplitude of the first oscillation, is smaller for the Tonga
data than for the Tern data. As for Tern, the virtual height decreases initially, as is
expected from the orientation of the earth's magnetic field above Tonga. Although
these two sites provided the cleanest data, similar variations in foF2 were observed at
other locations, the details of which can be obtained in reference 4.

Figure 3 shows plots of the critical frequency, foF2, as a function of time
(MET) above various European sounding stations, following the 58 MT Soviet test
at Novaya Zemyla on 30 October 1961. The stations shown in the figure are located
at increasing distance from ground zero going up in the figure, from about 1400
km for Kiruna to about 4300 km for Athens. Although the data used to make tLe
figure were not very good, some general observations can be made. The most obvious
characteristic is that the period of oscillation increases with increasing distance from
ground zero. It is also seen that the number of oscillations at most locations is about
four or five. A careful examination also shows that there was an initial decrease in
foF2, with a corresponding increase in virtual height (not shown in the figure), which
is expected from the magnetic field orientation at those sites. It is not clear from the
figure whether or not there is much decrease in the amplitude of the oscillations with
increasing distance from ground zero.

The data shows a number of features which will be important in constructing
an acoustic-gravity wave model. The most important general feature is that the
F region of the ionosphere oscillates at quite distant points following a large, near-
surface explosion. The period of oscillation increases with increasing distance from the
source, approximately linearly with distance. The period of oscillation at any given
point also increases slightly with time. The number of oscillations is approximately
constant for a given burst, independent of location. The amplitude of the oscillation
decreases with distance, although the data are insufficient to determine what the
scaling law with distance is. The direction of ionospheric electron motion depends
on the orientation of the earth's magnetic field lines with respect to the direction of
propagation of the gravity wave. In section 4 it will be shown how the general theory

6
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of acoustic-gravity waves can be used to derive these properties, which will be the
basis for constructing the AGW model. Before presenting these derivations, a review
of the general theory of acoustic-gravity waves will be presented in section 3.

8



SECTION 3

THEORY OF ACOUSTIC-GRAVITY WAVES

Most properties of acoustic-gravity waves, in particular those discussed in
the previous chapter, can be derived by assuming that the earth's atmosphere can
be described as a stationary, stratified fluid, with constant temperature in a uniform
gravitational field. Acoustic-gravity waves come about as small (first order) pertur-
bations about isothermal equilibrium of the equations of hydrodynamics. The fluid is
described by the pressure, p, density p, and velocity v, given as functions of position
and time. The equations of motion are the equation of continuity, balance of linear
momentum, and adiabatic equation, given, respectively, by

Dp-D- + P7 .,, = O, (4)
Dt

P Dv + Vp = pg, (5)

Dp + •. = 0, (6)
Dt

where the convective derivative is given by D/Dt =_/at + v V, -y is the adiabatic
constant, and gravity is assumed to be constant in the negative z direction, g = -g6 2 .
Equation (6) is derived by assuming the specific entropy of a material particle, s, is
constant,

s =o 0(7)

and that the fluid is ideal (or perfect),

S= c In p (8)

and using the continuity equation (4).

9



The density of a fluid in static, motionless (v = 0), isothermal equilibrium
is distributed exponentially as a function of height,

p(O) = poe-/H, (9)

where p0 is the density at z = 0. The corresponding pressure is

p(O) = poe-/H. (10)

According to equation (5) the constants Pa and p0 must be related to the scale height,
H, by

p0 = pogH. (11)

The speed of sound, c, is given by

C2 = P1 = "1P° = "IgH. (12)
P PO

To derive the linearized equations of motion from equations (4)-(6), which
describe small perturbations about the solutions given by equations (11) and (12)
(with 0Q°) = 0), we will use perturbation theory in a systematic way so the interested
reader may use this approach as a starting point for higher order corrections, which
will not be pursued here. It is easiest to work in cartesian coordinates and suppress
the y component of the velocity, which can be included at any point in what follows
by making the obvious changes. Therefore, let the velocity, v, be written

v(Z't) = U(, z,t)6. + w(x',Zt)A. (13)

The equations of motion in component form are

9p Op + p au aw
+ + P + P(14)

Ou Ou Ott 18pa-7÷u, + U9U + W• --- 01 (15)

10



8w +u~w a± 1 8 pa-7 + "- - + W - - + - -- = -9' ,6

ap+ ap a+ a u 8w

a- " + U 9X I z + "-f + 'YP-r ; = 0. (17)

A solution to these equations is assumed in the form of an expansion in
powers of the perturbation parameter, 6,

U,(X,z,t) = 6•,()(X, z,t) + e2u(2)(,, z,t) + (18)

w(x, z,t) = •w(')(X, ,,t) + C ,w(')(z,Z,t) + (19)

p(z, z, t) = p(O) + CP(Z) z,'t) + C2 p(2)(X z, t) + " ", (20)

p(X, z,t) = p(O) + ep(l)(X, z,t) + e2p(2)(x, z't) + (21)

where p(O) and p(O) are given in equations (9) and (10). Also needed is the expansion
for the function p-1,

P- I 4T- E P p(2) + 2((o) 2.. (22)

Substitution of equations (18) to (22) into equation (14) and using the con-
densed notation, u. - au/ax, gives

()+ r2p(2)+e,•, t ,, +... + (E,•, +.1 (C,:, +..1) + ÷ -
(CW(,) + C2W,(2) + ... () + CAI) +...) +

(0(o) + +.)+ e) ++...,) +,62W.(2) +...) = 0. ()

Collecting terms in like powers of r gives

11



C(1,() + W(l)p9 O)U) + +()() +

-2(p$) + ,p ( 0)pc €) + (I) + p(o)t.+ P + p(lu1) +

+... =0. (24)

Substitution of equations (18) to (22) into equations (15)-(17) produces three more
equations similar to equation (24). Setting the coefficient of each power of c equal to
zero and assembling the sets of equations that result order by order yields through
second order,

Zeroth order:

A 0) = p(0)g, (25)

from which it can be concluded that po = pogH as in equation (11).

First order:

pt + w(1)pO) + Po),(L) + P()u41) = 0, (26)

u(I) + I__(1)= O, (27)
9 p(O) Z 

(

Wt 1) . ) (o) = 0, (28)
((1) (O) ().

Pt1) + pO) M +.p +P(O)•(I1) 0 0, (29)

which are the usual linear AGW equations.

Second order:

+ o+ p(o)t4) + -%) - _)p(.)_ p1u(1) + p(%('),) (30)

12



(2 11 p(M ,zUt + P__(2) = _•(,)U(,.)_- Wc,)U(,) + (1)p-- (•
p(O) 2 (O) (O)P(

Wt(2) 1 P.(2) 1P(2) P.(0) -PM 2 p(( )( (32)+ (o),. (TO) 70 - W-, +;-p) (o0) p(o), p;T(,O) L(oP?-)/
we(2 + W(ZPa 0) jy~ (0 --U ( 2 OW2)=-()(.1 ()( 1 yU ) p3

0),(32)

,) + • .+ -1p( ,) + 0p1o)w(,) = _.(,)pj,) _ -_ p(,)u 1) + Yp ,'w', (33)

which are also linear equations in the second order quantities appearing on the left
hand sides. The functions on the right hand sides are ur. no greater than first order
and are to be considered given solutions of the first order equations. The second order
equations are given here for reference, they will not be needed in what follows. As a
check on the expansions, it will be seen that the sum of the superscripts of each term
is equal to the order of the expansion.

We will now focus our attention on the linear AGW equations (26)-(29).
Solutions of these equations, subject to appropriate initial and boundary conditions,
describe the motion of small disturbances from the equilibrium configuration given by
equations (9) and (10). If the disturbance is too large, then these equations do not
provide an adequate description and higher -rder corrections or an entirely different
approach are needed. It has been found that t e linear AGW equations usually provide
an adequate description of traveling ionosphere disturbances at points distant from
the source of the wave. In our case, we wish to describe ionospheric motion at points

far from and at greater altitudes of a point which is the source of a large localized
atmospheric disturbance. The linear equations will not yield solutions at points near
the source. Eventually, however, the disturbance will have spread out enough that an
initial configuration can be defined which is close to the linear regime. The difficultly,
of course, is that this initial configuration is unknown. It will be seen, however, that
much information is revealed by making quite general assumptions about this initial
configuration and employing general plane wave solutions of the linear equations,
which will now be described.

It can be shown that plane solutions to equations (26)-(29) exist if an expo-
nential factor with scale height 2H is added to the velocity functions and exponential
factors with scale height -2H are added to the density and pressure changes (see, for
example, reference 8). That is, there exist solutions of the form

13



1)(r, t) = ul(k) ez/2H ei(k r - w(k)t), (34)

w(')(r,t) = wl(k) ez 1 2H ei(k. r - w(k)t), (35)

p(')(r, t) = pa(k) e-z/2H i'k - r - w(k)t), (36)

&~1(rt) = p1 (k) e-z/2H •i(k r - w(k)t). (37)

Here, the complex constants, tsi, wi, P1, and pt, depend only on the wave number k
and provide the relative amplitude and phase of the first order perturbations. Their
precise form can be determined in a straightforward manner, but will not be needed
here (see reference 8 for details). The angular frequency, w(k), is determined by the
dispersion relation

k2 2-C2 - 2(38)Xkj2,• - + (,' -,) ((3s)

where kh stands for the horizontal wave number which is k. for the planar case where
there is no y dependence or ,% = k)c + k. for the general or radially symmetric case,
which will be the case in the subsequent presentation. The acoustic cutoff frequency,
w., and the Brunt-VWisili frequency, wb, are given by

2 b) - 1) 2 (39)

The dispersion relation (38) can also be written

W2 = 1 ( k2 + .± 1(C2k2 + W.2) 2 - 4C2kW2. (40)

It is easy to show from this equation that waves can propagate (w2 > 0) only if w > w.,
which is called the acoustic branch, or w < wb, which is called the gravity wave branch.
In the subsequent analysis, most of our concern will be with waves that are composed
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of solutions whose frequencies are in the gravity wave branch and we will use the term
gravity wave to describe such solutions.

A general solution to equations (26)-(29) can be obtained as a superposition
of the plane wave solutions (34)-(37). For example, the horizontal velocity u(r, t) can
be written

u,(r, t) (2r)s/2 f 1(k)u()(r, t) dk

(27r)3/2 f f(k)uI(k)eu'l r e-iw(k)t Ak. (41)

If the initial condition for u is (the initial condition for the function u is the horizontal
velocity as a function of position following the onset of the localized disturbance at
some later time, which will be taken as t = 0, such that the disturbance is small
enough so that the linear approximation is valid)

u(r,0)-- f(r), (42)

then a straightforward application of the Fourier theorem shows that

(k) = I -z/2HeI r dr(2r)/2 u(k f(r)e (43)

The initial conditions can be used to determine the parameter e, usually taken to be
one.

With a few simple assumptions regarding the nature of the function f(k), a
great deal can be learned by studying equation (41) and using the dispersion relation
(38), which is the subject of the next section.
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SECTION 4

ASYMPTOTIC ANALYSIS OF GRAVITY WAVES

By applying standard asymptotic analysis to integral solutions of the AGW
equations such as that appearing in equation (41), a great deal can be learned about
the nature of the solutions at positions far from a localized initial disturbance for late
times. It will be seen that much of the information can be obtained from the dispersion
relation independent of the precise details of the initial conditions. In particular, the
method of stationary phase will be used, which can be stated as follows: let

1(A) = ff(x) exp[iii4(x)1 dx, x = (zIl.. .,zn). (44)

Under suitable conditions, which can be found in refcrence 1, this integral can be
expanded in an asymptotic expansion for A - oo, the first term of which is

1(2) ()n/2 1: f(xo)exp [i(xdt () + is4sgn det (iz.(xo))4

where the sum is over all those points, xo, such that VO(x0) = 0. Higher order terms
contain larger negative powers of A, which approach zero faster than the term above
as Ao-- oo.

Applying this well-known result to equation (41) provides an asymptotic
approximation for the horizontal velocity, and similarly for the other hydrodynamic
field variables, as t o o,

(ko~~~ a - wkt)+isde(8w(ko))

,ez/2H f(ko)ul(ko) exp /i(k"r-W(ko)2) 4
tS/2 Idet (8(k)• ak( 4

where k0 is a solution of
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w ri 0W, z (47)
8k,, t' Wk. t'(7

with rh = z2 + y2 and k2 = k + kl.

4.1 FREQUENCY OF OSCILLATION.

To solve equations (47) to determine wo = w(ko) we use the dispersion

relation (38) to obtain

8h= (b t = k, (48)Sk 2 ,ws CTkw• kh2 W,2

wb 
+

---• - + -C C2-+ •

Using these relations in equation (47) and taking the ratio of the second to the first
equation gives

k, (9)
( wb2 ta-0

where cos 0 - z/r, r 2 = r2 + z 2. From this and the dispersion relation it follows that

=2 _ L2 sin2 (

C2  (W2-W) (2 2 _ W2Cos 2se'(

wW , (W2)Cos'

k. c2  (w 2_wco20)' (51)

Taking the sum of the squares of equations (47) gives
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T _ = 2.2 (52)

Using equations (50) and (51) in this equation finally yields

( 2 - 2~) (W2 _ Wb) 3 (W2 _ W' cos 2)

w2 [(W2w2) (w2 _wcos'o)- (W2_W'2) (2sin3O)] 2 = - (53)

The solution(s) of this equation give(s) those frequcncies, wo, to be used in the asymp-
totic solution (46), which we will now analyze.

Let the square root of the left hand side of the above equation be designated
f (w) so the equation is written

rf) . (54)

ct

Solution of this equation can be obtained in a graphical manner as shown in figure 4.
The solid curve in the figure is a plot of 1/1f(w) as a function of W/Wb. The horizontal
dashed line has an ordinate equal to r = ct/r. Solutions of equation (53) are at those
points where the two curves intersect. It can be readily seen that for t large enough
there are three solutions, which will be called wo,1, W0,2 , and w0,s. It is obvious from
equation (53), that as t -- oo,

o, --* WC, Wo, 2 -* Wb, Wo,3 --+ w,4 (55)

where w. = Wb COS e.
Low frequency gravity wave oscillations whose frequency approaches W, are

consistent with observations. For observation locations at equal altitudes, the fre-
quency, we, decreases with distance from the localized source as 1/r, as is oOserved.
It also is clear from figure 4 that as t -- oo, wo --- w, (from this point we will be
concerned only with woji which will be called w0) from above, that is, the oscillation
frequency decreases with time (the period increases) as is also observed. To the next
order in t it can be shown that
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Figure 4. Graphical solution for asymptotic frequency.
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+ 50

where Z = (wb/•w)c, which for a typical atmosphere, is a speed just slightly less than
C.

4.2 SCALING WITH DISTANCE.

The asymptotic solution for the horizontal velocity given be equation (46)
is an oscillatory function of time whose frequency approaches w, as t --+ oc. Using
equations (50) and (51) it follows that

k(- ( w) ( (57)

which approaches zero as t --+ oo, showing there is no spatial oscillation at late times.

The amplitude of the oscillation (suppressing the exp(z/2H) factor), which
will be called u0, is then

uo(r,t) - 1(ko)u,(ko) 1/21 (58)
t3/2 Idet w(k,/,5

where we have assumed 1 is spherically symmetric and written its argument as ko. A
bit of arithmetic shows that asymptotically as t - co

w6t z
k-,o~- I kh,o -,,-t, (59)r •" tr2,

which gives

Wo wt z
., , wo -' -W. (60)

r r
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It can also be shown that

GM,4k") k ,,o ,o k.,

from which it follows that

det8 w' )[1/2 3-c/2( () (62)1/Idet a caki ) I [ W - r/) (17/62

Finally, ul "- 1 and, therefore, the scaling relation for uo is,

uo(r, t) - (t)3 (Z)1/I(Wt), (63)

Consider now some point, call it to, in the oscillation where m cycles have
occurred (m may be a fraction), then

27rm r
woto = 27rm or to -= 2-, (64)

tWb Z

from which it follows that

uo(r, to) 22r . (65)

This equation shows that for points at altitude, z, the number of oscillations, m,
which occur is the same independent of the distance from the localized source, r, if
. is a function of finite width, which is the case for a finite sized initial disturbance.
This equation also shows that the amplitude of the oscillations, for a given number of
oscillations, scales with distance as 1/r .

4.3 TIME OF ONSET.

It is well known that wave energy travels at the group velocity,
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V= (66)

For acoustic-gravity waves this value is bounded by the speed of sound, c. This means
that if a disturbance is localized, then an undisturbed point will remain so until a time
equal to r/c has elapsed, where r is the distance between the undisturbed point and
the closest point of the disturbance. If disturbances are confined to the gravity wave
branch (w < wb), then the travel is speed is actually bounded by Z = (Wb/w 4)c. To see
this, note that for horizontal propagation, which is the fastest way to cover a distance
R, the dispersion relation shows the horizontal component of the group velocity, u.,
can be written

_,____ 2,2 2]) ) C. (67)

For w < Wb this equation shows that u. has a maximum equal to j for w = 0. There-
fore, for an initial disturbance that is localized at the origin at t = 0, the soonest a
gravity wave disturbance can reach a point located at a distant r, assumed to be large
compared to the extent initial disturbance, is about t = r/E.

4.4 ELECTRON DENSITY CHANGES.

Up to this point we have concentrated our attention on the horizontal com-
ponent of the neutral velocity of the atmosphere during the passage of an acoustic-
gravity wave (it can be shown that the vertical velocity component is smaller by a
factor of 1/r asymptotically). Measurable changes in the ionosphere are produced by
indirect coupling of the ionospheric electrons to the neutral motion of the atmosphere.
It can be demonstrated that at F-region altitudes the coupling is such that the elec-
tron velocity is equal to the ionic velocity, vi, which is equal to the component of the
neutral velocity along the earth's magnetic field, i.e.

vi = v(68)

where f3 is a unit vector in the direction of the earth's magnetic field. (Full justification
of this relation can be found in reference 3.) Let the electron density change, to first
order, be denoted n' so that the electron density is given by
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n.,(r,t) = no(z) +n'(rt), (69)

where no is the ambient electron density, assumed to be stratified. The first order
continuity equation for electrons is then

On'6-- + V. (nov,) = 0. (70)

For a realistic atmosphere, dissipation of gravity waves occur as it propagates
vertically upwards, due to ion drag, viscosity, and heat conduction. Attenuation
of the wave begins to occur at approximately F-region heights in such a way that
the exp(z/2H) increase in the neutral velocity is almost exactly cancelled at greater
heights (see references 5 and 9). Therefore, let the form of the neutral velocity at
F-region heights be

v = Voei(k" r - wi) (71)

Assuming the same time dependence for n', equation (70) gives

n = -1(vY.h) (k. b)no + i(C8,,. f3) . (72)

At the electron density peak, where Ono/Oz = 0, it can be seen that the electron
density change is in phase with the neutral velocity, the density increasing for elec-
trons moving downward and decreasing for electrons moving upward. Applying the
asymptotic scaling relations, equations (58)-(65), we have for the scaling relation with
distance for the amplitude of n' at the peak

where K is a constant that depends on the magnetic field orientation, wb, and the
point in the oscillation of concern (usually the peak). Notice that the amplitude of
the oscillations, for a fixed peak altitude, falls off as 1/r, which is consistent with the
data for ranges that are not too long.
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4.5 COMPARISON WITH DATA.

At this point we have derived enough characteristics of gravity waves em-
anating from a localized source to construct a simple model that agrees well with
the data presented in section 2. To do this we must choose a form for the unknown
function, f, which is related to the initial distribution of the hydrodynamic horizontal
velocity. As explained above, the form of the function determines the number of os-
cillations as well as the magnitude of the amplitude, expected to be different for each
initial disturbance. The frequency of oscillation, onset time, and scaling do not. We
will try a simple function of finite width, a guassian of the form

f(k) = Uexp (74)

witi'
a = 2,rm (75)

Z

where the constants U and m are expected to depend on the total energy of the initial
configuration. We will make a fit to the data to determine these constants.

In order to account for free electrons created by solar radiation, as seen in the
data in figures 1 and 2, we simply add a constant source term for electrons, Q(t) to the
right hand side of equation (72) which agrees with the ambient data when no gravity
waves are present. With this in mind, a simple numerical solution of equation (72) the
horizontal neutral velocity of section 4.1, the onset time determined in section 4.3, and
the function 1 given by equation (74) with the constants suitably adjusted, produces
the critical frequency changes plotted in figures 5 and 6. The dashed lines correspond
to data plotted in figure 1 and 2, while the solid lines are the results of the model. As
can be seen by in the figures, the model reproduces the essential features of the data.

Comparison with the Soviet test data allows a scaling relation with yield for
the amplitude U and the parameter m which gives the number of oscillations to be
determined. It is found that reasonable fits result from

U = UoY, m = mnoVV (76)

where the values of the constants are determined by a best fit to the data.
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SECTION 5

NONLINEAR ISSUES

Electron density changes as computed by equations (70) or (72) are valid
only under the approximation that the change n! is small compared to the ambient
electron density n.. The electron density changes depend on the horizontal neutral
velocity, given asymptotically in equation (46). The magnitude of this velocity is
determined implicitly by the function f which, in turn, depends on the magnitude
of the initial condition, as given in equation (42). If this velocity is large compared
with the speed of sound, then the approximation which shows that the solution of
the linear first order equations (26)-(29) are close to the true solutions of equations
(14)-(17) is no longer valid. Large values of the neutral velocity correspond to large
density changes, which will eventually lead to unphysical negative densities if the linear
formulas are used for initial disturbances of increasing magnitude. (It is assumed that
the magnitude of the initial disturbance is some increasing function of the energy
which generates the initial disturbance.)

For a number of localized disturbances, which would individually generate
velocity distributions such as equation (46), the velocity, in the linear approximation,
would be given by the sum of the individual velocities, and the corresponding electron
density would be calculated using this sum. If this number of initial disturbances
becomes too large, however, then this sum will eventually approach, in magnitude,
the speed of sound, leading to similar difficulties described in the previous paragraph.

To model a large number of localized disturbances of arbitrary magnitude,
it is necessary to deal with these nonlinear issues. We will not be so ambitious as to
try to approximate corrections to the actual equations of motion, but instead will tr'
to construct solutions with certain reasonable properties which will be stated below.
The results of this section must, therefore, be looked upon in their proper light as, at
best, educated guesses. The assumptions which will guide our approach to modeling
large disturbances are:

1. The electron density must always be positive.

2. The solutions must approach the linear solutions for small initial disturbances.

3. The magnitude of the velocity must approach a constant as the altitude in-
creases.
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This last assumption is based on remarks stated in section 4.4 that in a realistic
atmosphere gravity waves become damped with increasing altitude in such a way that
the factor exp(z/2H) is almost exactly cancelled.

We will now outline the reasoning which will lead to a solution with the
properties enumerated above. The vertical velocity of electrons, w., according to
equation (68) is

W, = (vB])(a.K1), (77)

where the neutral velocity is v = uih (the vertical velocity component, wi., can be
added; it falls with distance faster than u by a factor of 1/r). Remarks following
equation (57) show that asymptotically the spatial phase of this velocity is zero and,
therefore, the spatial variation is mild except for the exp(z/2H) factor. According
to third assumption above, this factor must approach one for altitudes above the F-
region peak, which will be called z,. We will therefore try to find some function, call
it g(z), with the property that g -1 1 as z --+ oo and g - exp(z/2H) for z <C z, and
write

We = g(z)Wo, (78)

where

Wo = (6h " B)(A, ")e-z/2Hu. (79)

The function w0 is a very mild function of position and can be considered a function
of time only when integrated. A choice for g(z) which meets the assumptions is

g(z) - 1 + (80)

Consider electrons initially located at height zo (we will suppress the hori-
zontal dependence of the electron position; vertical motion is mainly responsible for
density changes). The equation of motion for the height of these electrons at time t,
z = Z(zo t), is
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8z __ -°)'

8-t 1 + e( -8)12 O w0, z(zo,O) = zo. (81)

The solution of this equation is given implicitly by

z' - " =z- '+ D', (82)

where

z-zc zo-zcD D
2H ' 2H ' 2H' (83)

and

D = * wo(zo,t') dt'. (84)

The solution of equation (82), call it z(zo, t), can be determined most readily by simple

numerical means. The inverse solution, zo = zo(z, t) can be determined in the same
way from equation (82), where, for consistency, z should replace zo in equation (84).
The solutions given are not exact, but approach the exact solution as the dependence
of W0 on z decreases.

The density of electrons, initially at zo, with density no(zo), are determined
by dividing by the jacobian of the transformation, zo - z,

n( ,,.- o(zo) (85)
jl(ZO) t

where

az 1+ exI
(, = =1 + e" (86)

Alternatively, the density can be written, using the jacobian of the inverse transfor-
mation,
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n.,(z,) = no(Zo)j(Zt), (87)

where

azo 1+ + C1
j(z"t)= • = (88)

It can be readily seen from these equations that the jacobians, and hence the densities,
remain positive for all -oo < D < oo, as required by the first assumption. The
construction also makes it clear that for small velocities, and, hence, small values of
D, the solution approaches the linear solution given by equation (72), as demanded
by the second assumption.

An extension for N localized disturbances can be obtained simply by sum-
ming the quantity Di due to each localized disturbance individually, which will now
be called D,

N

D = D, i- (89)

where

D, = fj Wo,,(Z t') dt'. (90)

and w0,j is vertical velocity of electrons produced by the ith localized disturbance
(divided by g). One then solves equation (82) to find the initial position of electrons
and equation (87) to compute the density. As for N = 1, all three of the required
assumptions are met by this solution.
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SECTION 6

OTHER MECHANISMS FOR CHANGE IN ELECTRON DENSITY

Thus far we have been concerned with changes in ionospheric electron den-
sity due only to volume changes produced by motion of the electrons driven by the
passage of an acoustic-gravity wave. Electrons can be freed into the ionosphere by pho-
toionization of atmospheric constituents, mainly nitrogen and oxygen (either molecu-
lar or atomic), by the sun (and other, less important, forms of radiation). The rate of
electron production at a given location does not depend on the amount of electrons
present, but rather on the intensity of the radiation and the amount of atmospheric
gases present. Electrons can be absorbed (or freed) via photochemical and other re-
actions with atmospheric constituents, such as recombination and detachment. The
rate of electron loss due to such reactions depends on the density of electrons present.
It will not be necessary for what follows to describe the individual processes involved
(see reference 7 for further details). In addition to production and loss mechanisms,
electron density can also change through transport processes, such as diffusion. Our
object in this section is to amend equation (87) of the previous section in a simple
way which accounts for electron density changes due to these processes as modified
by the passage of a gravity wave.

The basic strategy will be as follows: we will first show that loss mechanisms
conspire with diffusion in such a way that the ionosphere, during nighttime, decays in
a shape preserving manner, which leads to the first assumption that photochemical
loss at all altitudes of interest depends on the chemical loss rate at the electron density
peak. By assuming a single decay rate for the entire ionospheric profile still applies
during the passage of a gravity wave, we will then derive a formula which gives the
change in this rate as a function of the parameters describing the gravity wave. This
formula will then be added to equation (87) in a reasonable manner. At this point,
the reader should be reminded that not all resu!ts arri-ei .t in this section will be
rigorously derived from first principles, and the results should be viewed in the same
spirit as the previous section.

According to the remarks made above, the continuity equation for electrons
can be written

at
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where the electron density, n,, and velocity, v,, and the electron production rate, q,
are all functions of position and time. The electron loss rate, L(r, t) = L(n, (r, t), r, t),
is also a function of position and time through its dependence of the function L on
n.. The electron velocity can be thought of as the sum of two velocities, one which
occurs in ambient conditions due to transport and the other due to gravity wave
induced electron motion. The electron production rate is usually assumed to be zero
during the nighttime and a function of only altitude during the day (a consequence
of a stratified atmosphere), with a mild time dependence due to the travel of the sun
across the daytime sky. A useful form for the electron production rate as a function
of altitude is the classical Chapman formula, which can be written

q = q. exp 1[ - H , -secX ed55z)IH (92)

where X is the solar zenith angle, and q,,. is the production rate at the altitude of
the electron density peak, z,, for vertical solar radiation, X = 0. This form for q is
derived under the assumption the that atmosphere is made up of a single absorbing
gas whose density decreases exponentially with altitude with constant scale height,
H, (see reference 7).

For electrons at F-region heights and above, to quite a good approximation,
the electron density loss rate is proportional to the electrorn density, with the pro-
portionality constant a function of altitude only, dependent on the concentration of
neutral atomic constituents. As shown in reference 7, the loss rate can be written

I = On,, # = #ioe-l(x-5)/H, (93)

where Po is loss rate at altitude z,. The constant, -1, depends on the relative scale

heights of the ionizable gas and linear loss coefficient and is equal to about 1.75 for
altitudes above the E region. If there were no transport processes it can be seen that
electrons would be lost at low altitudes at exponentially increasing rates, which is not
the case.

6.1 DIFFUSION.

We will now show how electron diffusion can be derived from the equa-
tions of motion in the simplest possible case and how, under the assumption that
the electron loss rate is given by equation (93), this diffusion controls the decay of
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the ionospheric profile in such a way that its shape of the profile is preserved. We
assume the ionosphere can be described by a two component charged fluid made of
ions and electrons undergoing collisions with themselves and a neutral background.
The equations of motion are then

"•-4 ~ me,g- lV(nkT) + e(E + vi x B)
ni

-M,•in(v, - v,) - mve(v, - VC), (94)

-C Dv, mg -- lV(n'kT.) - e(E + v. x B)

-MevnJv, - V,,) - mea.',,(ve - v,), (95)

where for electrons me is the mass, n. the density, ve the velocity, and TY the temper-
ature, and similarly for ions, vin is the collision rate between ions and neutrals, Ven

the collision rate between electrons and neutrals, and vj the collision rate between
electrons and ions, E is the electric field, B the magnetic field, g the acceleration due
to gravity, k is Boltzmann's constant, and v,, is the neutral velocity.

The simplest case is time-independent vertical diffusion in a vertical mag-
netic field. In this case the equations of motion reduce to (all quantities depend only
on the vertical coordinate, z)

d(nikc7) = -nimig + njeE - nmim.'in(wi - wn), (96)
dz

d( n,kT, )dz ) -nmg - neE - nfemeven(w, - w'). (97)

Under the further simplifying assumptions that mi > me, ni = ne " n, wi = We = Wd
(plasma drift velocity), wn = 0, and miVin > mev0n, addition of the two equations
gives for the plasma drift velocity

Wd m[nk(T + T,)] + nhmig) (98)

With the further definitions
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T=p 2k (99)
2Mig

the plasma drift velocity becomes

wj =- D 1 dn + 1,, d-T + 1 (100)

where the plasma diffusion coefficient, D, is

DE 2 kT. (101)"D 4nvi.'

Simplifying further, we assume the ion mass and neutral mass are equal and are
distributed with scale height, H, and that T, = T, = T, which gives

D = Doe('-)IH, (102)

where Do is the diffusion coefficient at z,. The plasma drift velocity is finally given by

Wd -Do-)( dn + "1 . (103)

Notice that the diffusion coefficient increases exponentially with altitude, while the
electron loss rate, P3, given in equation (93), decreases exponentially with altitude.
It is expected that the effects will counteract one another is such a way that a peak
electron density will occur near where P and D/H 2 are equal. This analysis can be
generalized by removing some of the simplifying assumptions used in this derivation
(such as including an inclined magnetic field and a nonzero neutral wind).

We will now try to find solutions of the continuity equation (91), assuming
a loss term given by equation (93) and an electron velocity given by equation (103).
Assuming vertical motion only and taking q = 0 for simplicity, equation (91) becomes

a n,a

at = _On. - 5;(n.Wd), 
(104)
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where n, is now considered a function of z and t. Assuming a solution of the form

n.(z,t) = T(ze-, (105)

and using equation (103) gives

[D (-q +,87 =Xv.(106)

This equation can be made into an eigenvalue problem for A by supplementing it with
appropriate boundary conditions. We assume that the electron density is zero at the
ground and falls off rapidly enough as z --* oo to insure a denumerable number of
eigenvalues. Making the substitution

'7-- e-(8-xe)/12Hp, (107)

puts equation (106) in standard Sturm-Liouville form

dz +dq,=, I+ r, (108)

with boundary conditions, say,

A(0) = 0, Jim 0= , (109)

and where

p(z) = D(z)e-(z-5°)/2H, q(z) = -3(z)e-(z-z')/2H, r(z) = e-(z-zc)/2f. (110)

It is well known that nontrivial solutions to equation (108) exist for a denumerable
number of real eigenvalues, A,. Multiplying equation (108) by ji, then integrating
from 0 to oo, and using the boundary conditions (109) shows that
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- + qul dz

o r dz(1)

which follows from equations (110), (93), and (102), where it is obvious that p, q, and
r are positive. Therefore, all eigenvalues are greater than zero. The general solution to
equation (104) can be written as a sum of terms of the form (105) with all terms, and
therefore, n.,, decaying in time. Furthermore, eventually the term with the smallest
eigenvalue, A0, will dominate the sum and the solution will rapidly approach the shape
preserving form

n.(z,t) = no(Z)e-Ao, (112)

It can further be shown (see reference 7 and references contained therein) that the
peak of the function n0 occurs near where 0 = D/H 2 , which we have denoted go,
and that the smallest decay rate is approximately equal to the electron loss rate at
the altitude of the peak, i.e. Xo =,0P. It can also be shown that during the daytime,
q 0 0, an equilibrium solution can be found such that the electron peak occurs at
approximately the same altitude and that the peak electron density, n.. = no(z,), is
approximately equal to Po/qo, where q0 is the value of the solar production rate at the
altitude of the peak, which by equation (92) is qo = q, exp(1 - sec X) for a Chapman
layer.

6.2 CHANGE IN LOSS RATE DUE TO GRAVITY WAVES.

We have seen above that in the absence of gravity waves an ionospheric
profile approximately keeps its shape and decays (in the absence of solar radiation)
with a rate approximately equal to the electron loss rate at the altitude of the electron
density peak. In the presence of solar radiation the peak approaches a constant value
approximately equal to fo/qo, with transient terms decaying with a rate approximately
equal to flo. We now assume that during and following the passage of one or more
gravity waves, the electron density profile is changed due to hydrodynamic motions
described earlier, but in addition, the electron density returns to its ambient state in
such a way that the induced transient terms decay with a single rate for the entire
profile, which is given by the ambient rate plus a correction term which depends on
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parameters describing the gravity wave. We will now compute an approximation for
this correction term.

Let the density of electrons at the peak be denoted n,, and let the motion
of the electrons in the peak induced by the gravity waves be z(t), with z(O) = z,. The
continuity equation gives for these electrons

= _dfin - (log J), (113)

where all quantities in this equation are functions of time only, that is,

,8(t) = foe-(z(t'-)/H, (114)

Q(t) = q(z(t)), (115)

with q(z) given by equation (92), and

J(t) = 0- (116)

It will be assumed that J is given by equation (86), i.e. no other electron motion of
the peak is induced by the passage of the gravity wave other than the direct coupling
to the neutral motion given by equation (77).

The solution of equation (113) is readily determined,

n = -cK(t) tjt eK(')j(t,)Q(t,) dt' + nl,,o] (117)

where

K(t) = fo #(to) dt', (118)

and n,,o = nn(O), the electron density at the peak immediately following the passage
of the gravity waves, which is taken as t = 0.
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For no gravity wave motion, z(t) = zc, J(t) = 1, the solution (117) becomes

n, " o - (119)t + LO

It is clear from this equation that if the initial electron density, n,•.0, is not equal to
the equilibrium value, qo/flo, then the solution will approach the equilibrium value
with the transient terms decaying with a rate equal to flo.

Evaluation of the integrals appearing in equations (117) and (118) for ar-
bitrary motion can be performed in a straightforward manner by numerical means,
however, this would not suit the purposes of a model. We therefore seek an approxi-
mate solution, which can readily be compared with exact evaluation of the integrals.
The sought after approximate solution will be determined in stages, by considering
increasingly general cases.

First consider an undamped gravity wave motion in tVle absence of solar
radiation, given by z(t) = z, + asinwt, J(t) = 1, Q(t) = 0. The solution (117)
becomes

n,, = nn,o e-N(f), K(t) = f/oI(t), (120)

where

I(t) = f Cbinwt'dt', (121)

and b = -ya. It can easily be shown that

1(t) = lo(b)(t - r) + oscillatory terms, 0 < wr < 27r, (122)

where 1o is the zeroth order modified Bessel function of the first kind. For small b,
the power series expansion of 10 gives,

I(t) ý I + b2 t7 (123)
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so that the solution (120) becomes

n.m= n,,o e-ot, = fo (I + 4)1 (124)

Notice that for a single undamped gravity wave with amplitude not too large, the
peak electron density decays with a rate equal to the ambient rate plus a second order
correction that depends only on the amplitude of the wave and not on the frequency.
There is no first order correction, which shows that the amplitude must be somewhat
large to see a change in decay rate.

An alternative way of calculating the correction to the decay rate is to
expand the integrand in equation (121)

(t) = j (-bsin wt')' dt'. (125)
n=0

Retaining terms to second order gives

I(t)= 1(+ bt +-cswit 1--sinwt - + ., (126)4) 4 Wo

which gives the same second order change in the decay rate as in equation (i23).

We now generalize this result by considering a damped gravity wave, such
that z(t) = z, + ae-At sin wt, J(t) = 1, Q(t) = 0. The solution is again given by
equation (120) with

1(t) = fotexp [-be-At' sinwt'] dt', (127)

Expanding in the same way as equation (125) gives

I(t) = t + (W - e ') + - (128)
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Notice that this gives the same result as in equation (126) in the limit as A -* 0. This
solution gives a decay rate which initially has a second order increase, but eventually
returns to its ambient value, as would be expected as the gravity wave damps out.

Generalizing further let the electron motion be given by the sum of N

damped gravity waves dith differing frequencies and phases,

N
z(t) = z, + a e---" sin(wit + 0j), i = 1,... ,N. (129)

i=1

The solution is

I(t) =f exp ac-ite-'"sin(wit' + Oj)] dt', (130)

With a bit more algebra one can show that to second order, for wi 5 wj, i 0 j,

18 bA 2 - e- ) (131)

Most interesting about this result is that if the frequencies of oscillation are different,
then the second order correction is given by the sum of terms which apply for one
oscillation (as in equation (128)), there is no mixing of terms (no terms in bibi, i 54 j).

If the gravity wave is damped using a gaussian, as was chosen in equa-
tion (74),

N
z(t) = zc + aiee- 2 sin(wit + 0j,), i - 1,..., N, (132)

.--1

then, assuming Ai < wi,

1 N b
1(t) t + b •- (l e_ t) + (133)
8i=14t02+

This is the most general form we will use for the change in the decay rate due to the
presence of many damped gravity waves.

39



Performing the more general calculations when Q(t) - 0 and J(t) 0 1
becomes prohibitively more difficult. It tur.s out that to the order in which we are
working we can approximate the solution (117), by

n.- g ) I (t), (134)

where

N(t) = 16 0 1(t)/t. (135)

A comparison of the approximate formula (134) with the exact result (117),
is shown in figure 7. The electron density has been converted to critical frequency
using equation (1) for a case similar to that shown in figure 1. As can be seen, the
approximate result (dashed line), agrees well with the exact integral (solid line).
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Figure 7. A comparison of critical frequency vs. time using the approximate
formula (134) with exact integral (117).
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SECTION 7

THE MODEL

We will now assemble all of the ideas derived in the previous sections into a
working model. It will be necessary for both consistency and simplicity to make some
changes in the formulas presented earlier, as well as to include features not previously
discussed. All the derivations were carried out in cartesian coordinates, assuming a
flat earth, with an atmosphere of constant temperature and, therefore, constant scale
height and speed of sound. The model must compute electron densities above a round
earth, so the necessary geometrical changes will be made. The actual atmosphere has
a scale height which increases with altitude. For simplicity, we will choose an average
scale height and speed of sound, which give results that best approximate the data.
In section 4.4 it was shown that the amplitude of gravity wave-induced ionospheric
disturbance falls off as the inverse distance from the source under the assumptions
made in that section. In a more realistic case, there will be other mechanisms which
will cause damping of the wave. We will add an exponential damping term to account
for this expected behaviu-, with the length scale chosen to best agree with the data.

The ambient electron density profile for the ionosphere in general depends
on location and time of day (as well as other factors such as season, solar activity, etc.).
For modeling purposes we will use two vertically-stratified electron density profiles to
represent typical day and nighttime cases. The altitude of the ýlectron density peak,
z,, will be taken to be 300 km and the ambient electron loss rate at this altitude,
flo, will be chosen to reproduce typical nighttime behavior. The daytime electron
production rate qo will be chosen such that no = qol//0, where no is daytime electron
density profile.

7.1 CONSTANTS AND AUXILIARY FUNCTIONS.

The following list of constants have been chosen to best fit the available data
(they may be changed by the user):

c = .7 km/sec, z, = 300 kin, H = 40 kin, (136)
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Xo = 1 x 104 kin, Ao = 50 km/MT, mo = .45 MT- 2 , (137)

#0 = 1 X 10-4 sec 1, = 1.75. (138)

it is assumed that the model is provided with a number of external functions
which can be called when necessary. They are:

Electron density profile: no(z) (one for day and one for night),

Brunt-VWisili frequency: wb(z),

Acoustic cutoff frequency: w.(z),

A function: zo(z, D) and its inverse z(zo, D), which are solutions of

Z' -C e- -Z6 - D1, (139)

where

=1 = --4" (140)

7.2 INPUTS AND OUTPUTS.

The earth is taken to be a sphere of radius R,, with a spherical coordinate
system, (r, o, 4), centered at the center of the sphere. The earth's magnetic field is
taken to be a magnetic dipole with axis along the polar axis of the spherical coordinate
system.

The inputs to the model are the locations, yields, and times of burst of
N explosions, and the location and time at which the electron density is desired
(observation point). The following list describes each input parameter:

O9, i = ..... , N: colatitude of the ith burst,

ob, i = 1,... ,N: longitude of the ith burst,
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zb,, i = 1,... ,N: altitude of the ith burst in km,

Y,, i = 1,..., N: yield of the ith burst in MT,

tsi = 1,... , N: time of the ith burst in seconds,

8: colatitude of the observation point,

,: longitude of the observation point,

z: altitude of the observation point,

t: time of observation.

The outputs of the model are the electron density as a function of position
and time,

n, (r, 0, 40,t),

each partial derivative of n, with respect to r, 0, 0, and t,

an, an, an, tn.
8 ae4'0 a-t'

as well as all second order partial derivatives of n, with respect to r, 0, and 4,

a2nn. a 2 n, a2n, a2n, a2n, a2n.
Ora2 a82' oo 2 arOr' aeoao

We will only present the formulas for the electron density, n,, the formulas for the
first and second partial derivatives can be obtained from these formulas by a straight-
forward, though tedious, application of the chain rule of the differential calculus of
many variables.

7.3 MODEL ALGORITHM.

The electron density, n.(z, 0, 0, t), is computed as follows:

rb~i = R + zb,i, =1,...,N, (141)

44



= z - •,i, (142)

cos 09,, = cos 0 cos oe + sin 0 sin O9 cos(o - 0j), (143)

zi = r&,jO=,j, (144)

V. = 42,+ 1, (145)

2 cos

sinU A= ( 2+3cos 2)/'/ (146)

Cos O, - Cos 0 Cos O.,, (147)
sin 0 sin 0=,j (

A, -(os oq sin 2A - 2-,n At), (148)

E = -xilx, (149)

l W.(Z) +1 to,i+ (150)

Il, W= •(z) j

Wi =Wb(Z)• (1+2w( c2(t + 0,)) 2 (151)

Q, = sin (w,(t - t (152)

Ai AoYj, = mj = -il (153)
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27,mi (154)

2Zi

=Wb(z)(t - ti)(155)

S, = exp (-ki,/a), (156)

D1 = SQjEIP,, (157)

N
mD= D, (158)

i=1

= AjE1 P,, (159)

,, = wb,(z.0) z• - zb,, (160)

27rmi xi

N d2  2 2

8 - (- (' ' (16 1)

b= +-2, (162)

0• =1o 1 + (I[z(z",-b) - zj)] , (163)

{ fono(z), day (164)q ot= O night'

zo = zo(zD), (165)
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1+= (166)
1 + e•

t = t - min(t1 ,,), (167)

n (no(zo) - 1,+ .(168)

7.4 RESULTS.

Figures 8 and 9 are electron density (plasma frequency) contour plots gen-
erated using the AGW model. For each plot, the electron density following the
detonation of four simultaneous high-yield, near surface bursts at two hours is plotted
for the surrounding region. Figure 8 is the daytime case and figure 9 is the nighttime
case.

The lower portions of each figure are electron density contours in a horizontal
plane 300 km above the earth's surface. The distance between the tick marks is
556 km. The upper portions of each figure are electron density contours in a vertical
plane which intersects the lower portion of the figure along the line shown in the center
of the figure. It is clear from the figures that the effect of the gravity waves is to distort
the normally vertically stratified ionosphere into regions of varying density on scales
of about 10 km to 100 km. Notice that the effect is more prominent during nighttime.
During the daytime, the sun acts to more swiftly return the ionosphere to its ambient
state. Further details concerning these plots, as well as the implementation and use of
the AGW model in the RAYTRACE code and its subsequent application for an HF
signal specification can be found in the companion report, reference 6.w
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SECTION 9

GLOSSARY OF SYMBOLS

a 2 wm/z and AGW amplitude n,(z) electron density at height z

b -ya ne,,., ionospheric peak electron density

B earth's magnetic field nj ion number density

c speed of light, or sound n.i electron density at peak

c" specific heat (constant volume) n,.,# electron density at peak just after AGW

E (Pbl.w) c n# ambient electron density

D plasma diffusion constant p pressure

Do plasma diffusion constant (reference) p(W) ith pressure perturbation

f wave frequency P0 pressure at height zero

foF2 critical fr..Iuency of F2 layer q electron production rate

fp plasma frequency q# electron production rate at peak

f(r) initial velocity distribution r radius

f(k) fourier transform of f(r) R, earth's radius

g acceleration of gravity rh cylindrical radius

g(z) height function s entropy

h true height t time

H scale height T, electron temperature

hW virtue height Ti ion temperature

I(A) stationary phase integral Tp plasma temperature

j inverse jacobian T# disturbance onset time

J jacobian u horizontal speed

k wave number U constant

K constant u(0) ith horizontal speed perturbation

k, ith component of k u3  au/ax (etc...)

kh horizontal wave number Uo U at Y 1

k. stationary phase solution v velocity

I electron loss term ve electron velocity

m number of cycles v9  group velocity

me electron mass v, ion velocity

mj ion mass v(') ith vertical speed perturbation

m, number of cycles at yield one w vertical speed

n index of refraction Wd plasma drift velocity

N number of disturbances x horizontal position

n perturbation in electron density Y yield
z height
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zI scaled height
z, reference height

St/n,

fi÷ loss rate reference
"-y ratio of specific heats
t, (z) functional form of n.(z)
9 angle w.r.t. vertical
e expansion parameter
X, eigenvalues of A
.k. dominant eigenvalue
A parameter
g(z) normalized functional form
vij, ion neutral collision frequency
p density

PO density at height zero

P(W) ith density perturbation
X zenith angle
r ct/r
we vertical velocity of electrons
wb Brunt-Vaisal frequency

W, acoustic cutoff frequency
w angular frequency
W0  stationary phase frequency
W, wb cos
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